Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots

Identifieur interne : 000243 ( Main/Repository ); précédent : 000242; suivant : 000244

Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots

Auteurs : RBID : Pascal:14-0016396

Descripteurs français

English descriptors

Abstract

I present a systematic study of self-assembled InAs/InP and InAs/GaAs quantum dot single-particle and many-body properties as a function of the quantum dot-surrounding matrix valence band offset. I use an atomistic, empirical tight-binding approach and perform numerically demanding calculations for half-million-atom nanosystems. I demonstrate that the overall confinement in quantum dots is a non-trivial interplay of two key factors: strain effects and the valence band offset. I show that strain effects determine both the peculiar structure of confined hole states of lens type InAs/GaAs quantum dots and the characteristic 'shell-like' structure of confined hole states in the commonly considered 'low-strain' lens type InAs/InP quantum dot. I also demonstrate that strain leads to single-band-like behavior of hole states of disk type ('indium flushed') InAs/GaAs and InAs/InP quantum dots. I show how strain and valence band offset affect quantum dot many-body properties: the excitonic fine structure, an important factor for efficient entangled photon pair generation, and the biexciton and charged exciton binding energies.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0016396

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots</title>
<author>
<name sortKey="Zielinski, M" uniqKey="Zielinski M">M. Zielinski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5</s1>
<s2>87-100 Torun</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>87-100 Torun</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0016396</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0016396 INIST</idno>
<idno type="RBID">Pascal:14-0016396</idno>
<idno type="wicri:Area/Main/Corpus">000337</idno>
<idno type="wicri:Area/Main/Repository">000243</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0953-8984</idno>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band offset</term>
<term>Biexcitons</term>
<term>Binding energy</term>
<term>Electron density</term>
<term>Excitons</term>
<term>Fine structure</term>
<term>Gallium arsenides</term>
<term>Indium arsenides</term>
<term>Indium phosphide</term>
<term>Probability distribution</term>
<term>Quantum confinement</term>
<term>Quantum dots</term>
<term>Self-assembled layers</term>
<term>Stress effects</term>
<term>Structure factors</term>
<term>Tight binding approximation</term>
<term>Valence bands</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Bande valence</term>
<term>Discontinuité bande</term>
<term>Loi probabilité</term>
<term>Densité électron</term>
<term>Approximation liaison forte</term>
<term>Confinement quantique</term>
<term>Exciton</term>
<term>Structure fine</term>
<term>Facteur structure</term>
<term>Effet contrainte</term>
<term>Biexciton</term>
<term>Energie liaison</term>
<term>Couche autoassemblée</term>
<term>Arséniure d'indium</term>
<term>Phosphure d'indium</term>
<term>Arséniure de gallium</term>
<term>Point quantique</term>
<term>InAs</term>
<term>InP</term>
<term>GaAs</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">I present a systematic study of self-assembled InAs/InP and InAs/GaAs quantum dot single-particle and many-body properties as a function of the quantum dot-surrounding matrix valence band offset. I use an atomistic, empirical tight-binding approach and perform numerically demanding calculations for half-million-atom nanosystems. I demonstrate that the overall confinement in quantum dots is a non-trivial interplay of two key factors: strain effects and the valence band offset. I show that strain effects determine both the peculiar structure of confined hole states of lens type InAs/GaAs quantum dots and the characteristic 'shell-like' structure of confined hole states in the commonly considered 'low-strain' lens type InAs/InP quantum dot. I also demonstrate that strain leads to single-band-like behavior of hole states of disk type ('indium flushed') InAs/GaAs and InAs/InP quantum dots. I show how strain and valence band offset affect quantum dot many-body properties: the excitonic fine structure, an important factor for efficient entangled photon pair generation, and the biexciton and charged exciton binding energies.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0953-8984</s0>
</fA01>
<fA02 i1="01">
<s0>JCOMEL</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., Condens. matter : (Print)</s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>46</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZIELINSKI (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5</s1>
<s2>87-100 Torun</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s2>465301.1-465301.16</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577E2</s2>
<s5>354000507422540120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>67 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0016396</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. Condensed matter : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>I present a systematic study of self-assembled InAs/InP and InAs/GaAs quantum dot single-particle and many-body properties as a function of the quantum dot-surrounding matrix valence band offset. I use an atomistic, empirical tight-binding approach and perform numerically demanding calculations for half-million-atom nanosystems. I demonstrate that the overall confinement in quantum dots is a non-trivial interplay of two key factors: strain effects and the valence band offset. I show that strain effects determine both the peculiar structure of confined hole states of lens type InAs/GaAs quantum dots and the characteristic 'shell-like' structure of confined hole states in the commonly considered 'low-strain' lens type InAs/InP quantum dot. I also demonstrate that strain leads to single-band-like behavior of hole states of disk type ('indium flushed') InAs/GaAs and InAs/InP quantum dots. I show how strain and valence band offset affect quantum dot many-body properties: the excitonic fine structure, an important factor for efficient entangled photon pair generation, and the biexciton and charged exciton binding energies.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C21L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Discontinuité bande</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Band offset</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Discontinuidad banda</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Loi probabilité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Probability distribution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ley probabilidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Densité électron</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electron density</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Approximation liaison forte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Tight binding approximation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Confinement quantique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Quantum confinement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Confinamiento cuántico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Structure fine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Fine structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Facteur structure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Structure factors</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Biexciton</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Biexcitons</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Energie liaison</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Binding energy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Self-assembled layers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fN21>
<s1>013</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000243 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000243 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0016396
   |texte=   Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024